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Various low-order finite element schemes for the Navier-Stokes equations are analysed, 
including the commonly used bilmear velocity, piecewise constant pressure element, and the 
algorithms based on the finite element analogue of the MAC stenctl discussed m a companion 
paper. By performmg a truncation error analysis usmg a variety of different assumptions 
about how the nodal parameters represent the data, it is shown how a more complete picture 
of the behaviour of the algorithms can be obtained. In particular, differences in performance 
on coarse grids usmg algorithms which have the same asymptotic convergence rate can be 
explamed. 

1. INTR~OUOTI~N 

This paper is an attempt to gain a better understanding of the accuracy of finite 
element methods for the Navier-Stokes equations and how they relate to other 
methods. The standard analysis of finite element approximations to these equations. 
as set out, for instance, by Temam [ 1 ] and Heywood and Rannacher [ 2 ], gives error 
estimates with constants increasing with Reynolds number, and only applicable to a 
very restricted set of finite element approximations. However, experiments with finite 
element methods suggest that they can be just as capable as finite difference methods 
of giving good results at high Reynolds number; for instance, the vortex shedding 
computations of Gresho et al. [3], and the results discussed in the recent review paper 
of Hughes et al. 141. These results, amongst others, also show that the estimates of 
] 1 ] and [ 2 ] could be extended to a wider class of elements. There are, nevertheless, 
difficulties. An example of these is the vortex shedding experiment discussed by 
Gresho et al. ([ 3, 51 and private communication). It was found that a standard low- 
order finite element approximation using piecewise bilinear velocities and piecewise 
constant pressures gave inaccurate results on some meshes, but that if the piecewise 
constant pressures were replaced by bilinear pressures, then the velocity fields were 
much more accurate. The piecewise constant pressure element also yielded good 
results if the mesh was designed much more carefully round the cylinder. The same 
authors (private communication) had a similar experience with a steady Boussinesq 
flow over a wedge. The piecewise constant pressure element could not reproduce the 
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basic hydrostatic pressure gradient and a steady state of rest could not be obtained. 
Though the problem could be alleviated by subtracting off the hydrostatic pressure 
for an isothermal fluid, the results were still judged to be unsatisfactory. The 
piecewise bilinear pressure approximation yielded the desired steady state at rest. It 
was also found, nevertheless, that the inaccurate velocity fields obtained using 
piecewise constant pressures converged to the state of rest at a second-order rate as 
the mesh was refined. 

The standard approximation theory of [ 1 ] and ]2] does not distinguish between the 
convergence rate in velocity of the schemes using bilinear and piecewise constant 
pressures. In order to explain the results a different type of analysis is required. It is 
shown that the observed behaviour on coarse grids is consistent with finite difference 
truncation error estimates for the schemes. This suggests that it is worth performing 
more than one type of error analysis. The range of validity of any form of asymptotic 
truncation error analysis is limited and cannot usually be determined mathematically 
because the constants are not known. Only practical experience will suggest what it 
is. The results in this paper, which show that the coarse grid behaviour described in 
[ 3 ] and [ 51 is more consistent with a finite difference analysis than the usual finite 
element analysis, suggest that the range of validity of the finite difference analysis is 
greater in these cases. When the mesh is refined and smoothed, the behaviour is as 
predicted by the finite element analysis, which predicts a more rapid convergence 
than the finite difference analysis. 

In this paper the differences between the alternative analyses are first demonstrated 
for simple problems. A generalised truncation error analysis is then described. based 
on the ideas of [lo], which includes both the standard analysis of [ 2 ] and a purely 
finite difference analysis as special cases. It is shown how this explains the results of 
[3 ] and [S 1. In Section 4 it is shown how truncation error analysis can predict the 
behaviour of the schemes tested by the author in [ 17 ]. Since neither of the schemes is 
a standard Galerkin scheme, the analysis of [ 1] and ]2] is not strictly applicable. 

It should be made clear that the aim is not to replace the standard analysis, but to 
show that more information can be gained about the behaviour of schemes by 
performing a variety of alternative analyses. 

2. ERROR ANALYSIS OF SIMPLE PROBLEMS 

2.1. Alternative Analyses for the Heat Equation 

In order to motivate what follows, we first discuss briefly the simple case of the 
heat equation, which is well understood: 

a” = KV2u 
Bt on 8. 

24 = u. at t=O, (2.1) 

24 given or iiQ. 
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The semi-discrete finite element Galerkin approximation to this equation using 
piecewise bilinear functions to represent u is well known to converge to the exact 
solution at an O(h*) rate (e.g., Strang and Fix [6]). This estimate applies even on 
distorted grids where a local isoparametric coordinate transformation is used, and u 
is approximated by piecewise bilinear functions in the transformed coordinates (c, 11). 
The approximation can be written in the form 

j-nJ$,d(dr/=-KI’ Vu, . Vx, J&h V interior n, 
‘R 

uh = UhO at t=O. 

J 
_ @ho - uo) xn J dl dtj = 0, 

(2.2) 

where the functions xn form a basis for the space of all piecewise bilinear functions in 
< and q. No equation is required for boundary nodes in this case, and the boundary 
integral terms vanish. 

Consider the local patch of elements shown in Fig. 1. The system of equations 
(2.2) contains an equation associated with each interior node, where x,, is a piecewise 
bilinear function equal’to 1 at that node and zero at all the remaining nodes. The 
equation associated with the node numbered 5 in Fig. 1 is 

- 3: ( ~+~+!!$)+-!2&+~(3+!$) 
19 + -- au, au, au, 7 37 

144 +-5at+72at at 

=~@,+u,+u,+u,+u,~+jl-~log2)ii, 

+ ~log2-~ 
( 1 ( 

u,+ $log2-; u,+ 
i ( 

2%$log2 
1 

q. (2.3) 
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FIG. 1. Sample four element patch wth node numbermg. 
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If this were interpreted as a finite difference approximation to (2.1) then it has O(1) 
error, as can be seen by substituting successively the polynomials u = 1, X, J, .Y?. .X.V 
and y2. The coefficients of the left-hand side add to 13/12. Therefore the right-hand 
side should take the values, respectively, 0, 0, 0, 13/6, 0, 13/6. The right side of (2.3) 
gives 0, 0, 0, 2.3035, 0.0299, 2. A consistent first-order finite difference scheme has 
to reproduce these exactly. Thus the scheme (2.3) would have O(1) error as a finite 
difference scheme. The reason for this is well known. It is not valid to regard nodal 
values of uh as if they were interpolated values. They have to define the Ritz 
projection of u into the finite element space, given by 

(2.4) 

The standard finite element convergence proof starts by showing that //uh - ui/,,: = 
0(/r*) by using regularity properties of the Laplacian operator on Q with the given 
boundary conditions. Thus the point values U, to U, of uh in Fig. 1 are not inter- 
polated values. but may depart by 0(/z’) from interpolated values. Second differences 
of these values, such as the right side of (2.3). may thus differ by O(l), as is found in 
this case. 

This standard example emphasises several points: 

(i) A finite element scheme which converges at a second-order rate may be quite 
different from a finite difference scheme of second-order accuracy. 

(ii) The error in the finite element scheme for (2.1) is not locally determined. 
since the projection (2.4) is global. This would be a serious disadvantage if, instead of 
(2.1). the second-order wave equation was being approximated. 

(iii) The apparent truncation error of a scheme depends on the assumption made 
about how the data is represented. 

2.2. Alternative Analyses for the Advection-Dl$fusion Equation 

The advection-diffusion equation is the next standard system normally studied 
before the full Navier-Stokes equations. This can be written either as 

6?c 
FTU 

. vc+p-‘v2c=o (2.5) 

with suitable initial and boundary conditions, or as 

~+pu.vc+v2c=o. (2.6 1 

The choices (2.5) and (2.6) are appropriate for high and low values, respectively, 
of the Peclet number P. There has been extensive recent analysis of the finite element 
Galerkin method applied to this problem, together with development of alternative 
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algorithms for it, (see, for instance, Barrett and Morton [7,8] and Hughes and 
Brooks [9]). The projection (2.4) now becomes 

s 
knu . v(c, - c) - P-‘v(C, - C) . Vx,Y & drl 

n 

- 1 x,&C,-C)ds=O. (2.7) 
“PR 

This projection can still be used to prove that the Galerkin algorithm converges as 
0(/z*), but the constant now includes the Peclet number P. Thus the convergence 
estimate for the steady problem and the truncation error estimate for the unsteady 
problem (2.5) are both very weak except for extremely small h. In the case of the 
steady problem it is common to change the algorithm, as discussed in 17-91. The 
change is analogous to a change from centred to upwind finite differencing. For the 
unsteady problem (2.5) with large P, however, the equation is almost a pure 
advection equation, and in many applications the Galerkin method, or centred 
differencing, gives quite reasonable answers and the debate as to whether it, or 
“upwind”-type methods, should be used still continues. The behaviour of the Galerkin 
method for (2.5) can be explained by a truncation error analysis using not the Ritz 
projection (2.7) but a least-squares tit 

(_ x,,(C, - C)J d< dq = 0. 
-0 

(2.8) 

If we write (2.5) in the general form 

$+LC=O 
and the Galerkin approximation to it in the form 

%Ctl 
plSL,C,=O, 

(2.9) 

then it was shown in Cullen and Morton [ 10) that the truncation error can be written 
in the form 

v4l- L,C,. (2.11) 

In the case of (2.5), using the bilinear approximation to C on quadrilaterals, and 
supposing for the moment that u is constant, this error is of the form 

A, /uI h +A,P-‘. (2.12) 

where A I and A z are constants independent of u and P. using basic approximation 
theory results (e.g., [ 61). If P is large, the second term in (2.12) may be negligible 
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except in boundary layers. In addition, numerical experiments described by the 
author in [ 11 1 suggest that the first term of (2.12) is quite small for large h, provided 
that the data is represented by the least-squares fit (2.8). The reason for this is that 
the Galerkin method for a first-order operator L calculates the best least-squares fit 
to LC,. and this can be expected to be close to the best least-squares fit to LC even 
on a coarse mesh. This would be reflected in the estimate (2.12) by a small value of 
the constant A,. 

In the boundary layer, where the second term of (2.12) is not negligible, the 
Galerkin method is well known to have problems, since, unless the boundary layer is 
resolved properly by a stretched coordinate. the solution oscillates. The remedy is 
either to increase the resolution, as advised by Gresho and Lee [ 12 1, or to use a 
Petrov Galerkin method as in [ 7-91. In practice, the results obtained by Chan and 
Gresho 15 I, using the Galerkin method, and by Brooks I 13 I. using the 
Petrov-Galerkin method, for vortex shedding at Reynolds number 100 are almost 
identical, which suggests that the distinction may not matter very much. 

This example illustrates that by considering the least-squares representation (2.8) 
as well as the Ritz representation (2.5) more insight can be obtained into the 
behaviour of finite element schemes. In particular, error estimates can be obtained 
independent of global regularity constraints and dimensionless parameters. Such 
estimates, in general, will have smaller powers of h but also smaller constants. They 
may thus be a better guide to performance on coarse grids. For very small h the 
optimal estimates obtained using (2.7) take over. 

3. ANALYSIS OF SCHEMES FOR THE NAVIER-STOKES EQUATIONS 

3.1. Introduction 

Now consider incompressible viscous flow governed by the dimensionless 
Navier-Stokes equations 

%u ~+U.V”+Vp=+2”. (3.1) 

v.u=o. (3.2) 

on a region 0. with boundary conditions 

u=f on FQ, (3.3) 

and initial conditions 

u = U(, at t = 0, 

v . u. = 0. 
(3.4) 

R is the Reynolds number and the remaining notation is standard. We will make 
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frequent use of an alternative form of (3.1) and (3.2) discussed by Chorin and 
Marsden [ 14, p. 511. It can be proved that any vector tield u on f2 can be written as 

Pu + vq. (3.5) 

where V a (Pu) = 0; Pu = f, on &?, and 4 is a scalar field. Then (3.1 b(3.4) can be 
replaced by 

au -=p 
%t i 

$v~u--u.vu 1 
) (3.6) 

II = u. at t= 0. 

Numerical algorithms can be based on either system. 
As in the previous sections, we will analyse some simple finite element approx- 

imations using a variety of assumptions about the way in which the data are 
represented. It is convenient to introduce some extra notation for this, in the manner 
of ]lO]. Only a brief summary of the construction is given here. For simplicity. first 
consider solutions of (3.6). This can be written in the form 

ihI 
- = PLU. 
at 

A Galerkin finite element approximation to (3.6) can be written in the form 

(3.7) 

(3.8) 

where (PL), may or may not be separable as P,L,, To carry out an error analysis, 
assume that the method is attempting to represent the data by a projection Ye. 
Examples of this in Section 2.2 were the least-squares fit (2.8) or the Ritz projection 
(2.7). Then, as in (IOJ, the error made in solving (3.7) can be split as follows: 

Define 

u - llh = (u - ThU) + (rhu -u,). (3.9) 

eh = (rh u - ult). (3. IO) 

It obeys the equation 

$= (r,(PLu) - (PL), ThU) + ((PL), ThU - (PL)* Uh) (3.11) 

The first term on the right-hand side of (3.11) is the truncation error, and the second 
term is a growth term. A complete error estimate for the solution of (3.7) includes an 
estimate of the term (u - rhu) and the evolution term eh. If rh is the Ritz projection 
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for (3.1 j(3.4) we recover the standard convergence proof of / 1,2/. if rh is a node 
point collocation operator, we obtain a finite difference error estimate as would be 
obtained by Taylor series methods. 

In the steady case it is still possible to estimate the truncation error. In the c :ase of 
(3.7), the steady problem is just 

PLu-0 (3.12) 

so that the truncation error would be 

-(PL), rhu. (3.13) 

In order to obtain the actual error, we then require a property of PL such that if 

then 
llu, -A G c llfi -fd (3.14) 

Such estimates for the Navier-Stokes equations are discussed in 1 l-21, and can only 
be obtained in special cases. Thus comparison of algorithms for the steady case is 
difftcult, because whatever type of assumption is made about the data representation. 
the final error has to be calculated using (3.14). 

3.2. Analysis of standard faxed Interpolation Seh~mes in Two Dirn~nsia~~s 

We now seek an explanation of the results of 13 1 and 15 I. It was found there that a 
Galerkin approximation to (3.1 j(3.4) using piecewise bilinear velocities and 
piecewise constant pressures could give inaccurate results. However, O(h ‘) 
convergence in velocity was observed in a steady problem and a transient problem 
could be solved accurately by careful mesh design. When the pressure approximation 
was made piecewise bilinear. and the mesh was otherwise unaltered, the results for 
the velocities were much more accurate, though the convergence rate was the same. 
Both types of approximation could give spurious pressure oscillations, especially with 
bilinear pressures. 

Using the notation x, for piecewise bilinear functions on a quadrilateral mesh. with 
8, for piecewise constant functions, the standard mixed Galerkin approximation to 
(3.1 t(3.4) with these functions can be written as 

Xn-P*VXn+-pUo:vXn J d< dtj 

-I- 1’ (ph,y,,+rynVuh).ds=O, 
. iiIZ 

(3.15) 

[ V.u,B,Jd<d~=O, u,, given on XI and at t = 0. (3.16) 
’ R 
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The correct way to enforce the boundary conditions is discussed by Engelman et al. 
[ 151, and the best choice of initial conditions depends on what view is taken of the 
method of data representation. In the same way as for the advection diffusion 
equation, the standard error analysis assumes that the data are represented by the 
Ritz projection u + u,, defined by 

(U,.vU,-U.vU)X,+(p-Pn)v~,+~V(u,-u):v*, 1 J&h 

+j K~,r~k+~n%,-~)l .ds=O, (3.17) 
aa 

! V. (u,-u)e,Jd<dq=O. 
0 

A proof of convergence requires the Babuska-Brezzi compatibility condition, 
which involves 

(i) a unique solution of (3.15), (3.16) for p, and 

(ii) the property that a divergence free vector field u can be approximated to 
O(h’) by a piecewise bilinear field u,, which satisfies (3.16). 

This condition can only be proved for a limited set of finite element approx- 
imations, not including this one. In this case (i) is known not to be true, and (ii) has 
not been proved. However, the computational tests of Gresho (private 
communication) suggest that (ii) is satisfied. The algorithm can be modified by 
filtering the spurious pressure solutions [ 161, and then (i) will also be satisfied. 
Convergence has been proved for a modified algorithm using reduced integration 

1201. 
There are two problems with this analysis. The error estimate depends on R. the 

same difficulty as with the advection diffusion equation, and the same discussion 
applies. More seriously, the projection (3.17) involves u and p simultaneously. Thus 
it is not possible to extract an “energy” norm in which uh is the best fit to u and ph to 
p in any sense. Thus the possibility of recovering more accurate information is lost, 
which is a major advantage of finite element methods for self adjoint problems. An 
illustration of this is provided by the work of Gresho. A steady state of rest (u = 0) 
with the pressure gradient balancing gravity and buoyancy terms could not be 
reproduced using bilinear velocities and piecewise constant pressures. It is clear that a 
best fit to a zero field in any norm is zero: so that in no sense does the Galerkin 
algorithm give a best fit to u. The remainder of the analysis in this section is 
concerned with this second problem. 

3.3. Approximation of an Incompressible Field 

The extra difficulty in understanding solutions to the Navier-Stokes equations 
caused by the simultaneous approximation to u and p can be isolated by considering 
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the form (3.6). We consider simply how the projection P defined in (3.5) is 
represented. The truncation error extracted from (3.11) is 

r,(PLu) - (PL )h rh u. (3.18) 

Suppose for the present that (PI,), can be written in the form P,L,. Then (3.18) can 
be expanded, since P is linear, as 

(r,P - P,r,)(Lu) + P,(r,Lu -L,r,u). (3.19) 

The important term at present is the first term in (3.19). It is sufftcient to calculate 
the effect of 

PdJ - P,r,) (3.20) 

on a general vector field and to combine this with a truncation error estimate for the 
operator 

Lu=~V’u-u. vu (3.21) 

to give a complete estimate. 
Equations (3.15), (3.16) can be written in this form, defining L, by 

+ ] xnVu,,.dS 
“ii<2 

(3.22) 

and P, by 

(3.24) 

The projection P, is, however, only well defined if the Babuska-Brezzi condition is 
satisfied, allowing q to be uniquely determined. 

Now evaluate the truncation error (3.20). While the standard error analysis of 
[ l-21 does not use the decomposition (3.22 j(3.24). since an essential step in it uses 
a regularity property of the steady Stokes equations, it is clear that (3.20) can be no 
greater than the total truncation error (3.19). The computational results thus suggest 
that this error will be 0(/z*) for this element. As discussed in the Introduction, this 
leaves unexplained the behaviour on coarse grids. Therefore evaluate (3.20) using a 
grid point collocation definition for r,,. This is equivalent to performing a finite 
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difference truncation error analysis. Because of the implicit nature of the projection, 
there is a considerable amount of technical work to be done to convert an O(h”) 
truncation error for the individual operators V and V . u into an O(h”) estimate for 
(3.20). This is discussed by Chorin [ 181 and is not repeated here. Henceforward we 
will assume that if errors can be estimated for the gradient and divergence operators 
separately, they can be combined into an estimate of (3.20). 

Consider again the patch of elements in Fig. 1. The equation in (3.23) associated 
with node 5 for the ~1 component of u is 

& (PL’, + Pll, + Pv,) + &PC, + $ (Pq + Pu4) + ; 

19 7 37 

+ 144 - O6 + -$‘j- ‘8 + 72 “5 -g&,1 +q,o-q13-q,*) (3.25) 

and the equation in (3.24) associated with node 13 is 

f(u, - u5 + ug - us) + +I, + U6 - us - +v, = 0. (3.26) 

It is clear that the last term of (3.25) is not a consistent approximation to dq/@ since 
it is non-zero if q = x. Equation (3.26) is a consistent approximation to au/ax + au/&) 
since the terms in u can be treated as a difference between linearly interpolated values 
at (l), 1) and (l$, 0) in Fig. 1. Thus the scheme has 0( 1) error if regarded as a finite 
difference scheme. 

Similar calculations, not repeated here, show that using piecewise bilinear 
velocities and pressures gives O(h) error in this sense as do piecewise quadratic 
velocities with bilinear pressures. It can also be shown, after considerable algebra, 
that the same conclusion applies if, instead of a grid-point definition of r,,, we use a 
least-squares definition 

J (r,u-u)x,Jd<dq=O Vn, 
n 

I 
(r,p - p) e,Jd<dtj = 0 ‘in. 

n 

(3.27) 

The second equation is exactly the same as the finite difference representation. Thus 
the observed behaviour of the schemes on coarse grids is consistent with either a 
finite difference or least-squares interpretation, while the ultimate convergence rate is 
consistent with the standard finite element analysis. This suggests that the range of 
validity of the finite difference analysis or the analysis using a least-squares represen- 
tation is greater than the usual finite element analysis. 
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4. APPROXIMATION OF THE NAVIER-STOKES EQUATIONS USING 
SOME ALTERNATIVE ELEMENTS 

4.1. Introduction 

We now repeat the analysis of (3.20) using the finite element analogues of the 
MAC stencil introduced by DiCarlo and Piva [ 191. The lowest-order element of this 
class uses discontinuous linear velocities defined by values at midside nodes, and 
piecewise constant pressures. A Galerkin-type algorithm using this element gives 
good results on a regular mesh, but fails to converge on a general rectangular mesh. 
In [ 191 it was proposed that the element should be used in conjunction with a global 
coordinate transformation, as with finite difference schemes. In a companion paper to 
this [ 171, it was shown how the element could be used with a local coordinate 
transformation if either finite differences were used for the pressure gradient term, or 
the algorithm was based on the vorticity. In this section we analyse these two 
algorithms. 

In order to approximate the continuity equation properly, the unknowns are taken 
as normal mass fluxes across element boundaries. rather than velocities. Thus we 
write flux components (m, n) across sides <= constant and v = constant. The 
component m depends only on < and is the total flux across the line l= constant 
contained within one element (Fig. 2). This definition could be made in two or three 
dimensions, but in two dimensions, as used here, the method is really a disguised 
streamfunction method with (m, n) identified as (--;~I,Y/~v, @/a<), where li/ is a 
piecewise bilinear streamfunction. 

The flux component m is assumed to be linear in l and independent of 7 and vice 
versa for n. The associated trial functions are written as A,, and ,u,, respectively. 
Contours of a typical A,, are shown in Fig. 2. 

4.2. Analysis of Scheme with Finite D@erence Pressure Gradient 

The first algorithm used in [ I7 ] uses a Galerkin-type method for the operator L 
and a finite difference method for P, as follows: 

FIG. 2. Contours of trial function for { fluxes. 
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where 

(4.3) 

i’ P,m, S di = 0. 
I=-1 

(4.4) 

In (4.1), U, p and y are the components of the metric tensor of the bilinear coordinate 
transformation defined by 

In (4.2), the test functions x,, are the piecewise bilinear trial functions used in 
previous sections. The boundary integral term vanishes on no-slip boundaries. In 
(4.3), 6, and 6, are finite difference operators giving the gradients of q normal to 
element sides as defined in [ 171. In (4.4), the summation is over the four sides of 
each individua1 element. 

This is not the standard Galerkin algorithm, so we shall check the consistency of 
both L, and P,. The analysis depends, as usuaf, on the assumption made about how 
the data is represented. It is found that we must choose a projection rh as follows: 

arh nxnt - yrh wn, - fi(rh n,& - rh m&f) 14 drl - !,, xn ‘h m x ds 

= . CJdif’dq Vn. I -0 
(4.5) 

1 J(r,p- p)B,dtdq=O YE. (4.6) 
. It 

4 

\‘ rhmi- dij=O around the perimeter of each element. (4.7) 
I==1 

In (4.5). [ is the vorticity derived from the exact velocity field. This equation 
therefore states that the discrete vorticity in derived from (rhm, ~,,n) using (4.2) is the 
best least-squares fit to [ by piecewise bilinear functions. Therefore 

llrh - iill., = O(h2). (4.8) 

The definition (4.5). (4.7) of rhm and r,,tr can be shown to make sense. provided the 
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original problem was properly posed, since it is a definition of a velocity field from 
its rotational and divergent parts. 

Because of (4.7), the flux components (r,,m, rhrr) can be written as (-i’w,Jiir], 
~!@~/a~), where v/,, is a discrete streamfunction. Substituting derivatives of wh into 
(4.2) shows that the discrete vorticity ih is derived from vj/h by the standard Galerkin 
approximation to 

v*ly-( (4.9) 

using bilinear elements. We therefore have 

II v/l - WI/L, = W)- (4.10) 

where the constant in the estimate involves only properties of the Poisson equation 
onQ. This means, by direct differentiation, that 

Ih -mll,L = WI (4.11) 

and that therefore every term on the right-hand side of (4.1) is within O(h) of its true 
value. Thus the truncation error 

r,L - L,r, = O(h), (4.12) 

where the constant in the estimate does not increase for IargeR. 
We must now estimate (r,P - P, r,)u, for a general divergent field u. Since the 

algorithm (4.3), (4.4) for P, is a finite difference scheme, the difference operators ij<. 
6, are constructed to be first-order accurate, and the approximation to the divergence 
operator in (4.4) is also at least first-order accurate, then the finite difference 
truncation error 

s,, P - P,s, = O(h), (4.13) 

where sh is a grid-point collocation projection such that s,,y/ interpolates v at the 
nodes. This means that the discrete mass fluxes across element sides are exactly the 
integrals of the true mass fluxes. Because of (4.11). we have 

(4.14) 

so that 

(rh P - P,r,)u = (rh - sh) Pu + (s,P - P,s,)u 

+ P,(s, ~ r,,)u = O(h). (4.15) 

Thus the algorithm (4.1) to (4.4) is consistent. However. the proof requires a different 
representation of the data for P, and L, and thus the error includes two contributions 
of the form (4.14). These contributions are not locally determined, since they depend 
on the estimate (4.10). The results of 117 1 suggest that the scheme does converge to 
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the right answer, but is not very accurate on coarse grids. This is consistent with the 
difficulty in obtaining the error estimate. 

The second algorithm of [ 171 cannot be naturally split into the form P,L,. 
However, it contains an approximation to P, of the form 

. 1 - 
.LJ’( a P,n, - nh) xns - y(P,m, - mh) Xnq -PI (P/l% - %) xn, 

- (f’,m - md xnrl I& dv - !,Q x,,(P,mh - m,J x ds = 0 Vn, (4.16) 

i P,m, - di, = 0 around the perimeter of each element. (4.17) 
i=l 

Inspection shows that (4.16) is exactly of the same form as (4.5) and so P, preserves 
the discrete vorticity. Therefore, the truncation error (T.E.) contribution (r,P - P,r,) 
is zero; because both the rotational and divergent parts of the T.E. are zero. 

The full algorithm can be written as follows, setting 

Qh = (PL),: Jo f [aQhnhxnr - ~Q,,m,,x,,,, -P(Qhndnl, - Qhmt~“s)l drdh’ 

= (w-P*) 
i J2 c-h hxnr + n/Ixntl I (4.18) 
n 

where n runs over all interior nodes. The treatment of boundaries is discussed in I17 I. 
On rigid boundaries the normal flux is specified and there is no need for an equation 
in (4.18) associated with boundary nodes. The algorithm is completed by using (4.2) 
to define L$ and (4.4) for the incompressibility condition. The pressure is recovered 
separately as discussed in [ 171. 

The T.E. estimate proceeds as follows. The algorithm can be considered as first 
calculating components of Lu as follows: 

t component: f (anh + pmh) Ch + f Chtl, 
(4.19) 

II component: f (pnh - ym,) Ch + $ &, 

and then projecting them, using (4.16) and (4.17). The preceding arguments giving 
the estimates (4.10) and (4.11) show that the components (4.19) are within O(h) of 
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their true values. Thus, since there is no truncation error associated with the 
projection, we can expect that this estimate will still hold for the total truncation 
error. An attempt to prove this properly is outside the scope of this paper. It would 
require a regularity property of the exact projection P. The results of [ 17 1 suggest 
that this algorithm is more accurate than the hybrid finite difference scheme. This is 
probably due to the exact preservation of the discrete vorticity by (4.16). (4.17 J. 

5. FOURIER ANALYSIS 

It has been possible to explain most of the results of I17 1 and of Gresho by various 
truncation error estimates. However, all these estimates contain constants, many of 
which depend on global properties of the Poisson or Stokes equations in R. In 
particular, the estimate (4.10) of the error in the discrete streamfunction is globally 
dependent. The results of [ I7 ] showed that, on a stretched rectangular mesh. there 
were substantial errors in the results which were insensitive to the choice of 
algorithms used. All the algorithms used (4.4) to represent the incompressibility 
constraint. This suggests that the error associated with enforcing (4.4) may be 
significant, even though it is a locally consistent approximation to (3.2). To study it 
further. we state the results of a Fourier analysis of this constraint. Consider a 
rectangular domain R: 0 < x < L,, 0 < J’ < L,,. Calculate the effect of enforcing (4.2) 
to (4.4) on the trial velocity field 

u = i sin(&) COS(/J~). 
(5.1) 

L’ = C cos(kx) sin([r), 

where kL, = mrr, IL,, = nrt. This field satisfies the conditions u = 0 on x = 0, L, and 
I! = 0 on y = 0, L . Assume that R is subdivided into rectangular elements with 
dimensions Ax, AJ~ Write K = k Ax, L = 1 Ay. Then the discrete incompressibility 
condition (4.4) on an approximate field with nodal values 

i,, sin kx cos ly, 
(5.2) 

L;,, cos kx sin 1~ 

requires 

k~ sin fK sin in 
ll + iL;h - 

/I 
= 0, 

K 

whereas the exact condition on (3.1) is 

(5.3) 

(5.4) ku’ + lfi = 0. 
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A lengthy calculation shows that satisfaction of (5.3) given (5.4) and the preservation 
of the vorticity requires 

lab ff(l)(lz7- kr;) 
Eh = (12c.#L) + k%(K)) ’ 

(5.5) 
ka(/2) /qK)(G - ki;) 

L;h = - (/*a(d) $ k*CZ(K)) ’ 

where 

afK) = 
12 sin*($) 

K2(2 f COS(K)) ’ 

P(K) = 2 sin({lc)/ti. 
(5.6) 

It is immediately seen that tl, depends on tS and r;h on zi and that, though the error in 
(5.5) can be shown to be O(h’). it has a very complex dependence on k and 1. The 
error could only be reduced by replacing (4.4) by a more accurate approximation to 
v.u=o. 

6. DISCUSSION 

This analysis shows how the results of both Gresho and the companion paper I17 1 
can be understood by using a more flexible approach. This is achieved, as in IlO1, by 
carrying out truncation error estimates with a variety of different assumptions about 
how the data is represented. However, this brings the disadvantage that it is very hard 
to predict the performance of different algorithms in advance, since it may not be 
clear what assumption to use in the analysis. The results of [ 17 ] suggested that, in 
regular geometry, the accuracy depended more on the mesh design than on the 
choices of algorithm used in that paper. All the algorithms used there approximated 
the continuity equation by (4.4). This suggests that the error in the velocity field 
resulting from enforcing (4.4) may be an important contrjbution, even if the vorticity 
is preserved when it is enforced, as shown by the calculation in Section 5. In irregular 
geometry, the accuracy of the approximation to the projection operator P appears to 
be very important. The best results of Gresho and 117 I are given by schemes which 
reduce the truncation error associated with it. This suggests that vorticity-based 
methods may have advantages. 

It is clear that a great deal of further work is required to understand the relative 
merits of different methods for these equations. This discussion illustrates that error 
analysis cannot be a replacement for practical tests. 
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